Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38667831

RESUMO

When writing down a Langevin equation for the time evolution of a "system" in contact with a thermal bath, one typically makes the implicit (and often tacit) assumption that the thermal environment is in equilibrium at all times. Here, we take this assumption as a starting point to formulate the problem of a system evolving in contact with a thermal bath from the perspective of the bath, which, since it is in equilibrium, can be described by the microcanonical ensemble. We show that the microcanonical ensemble of the bath, together with the Hamiltonian equations of motion for all the constituents of the bath and system together, give rise to a Langevin equation for the system evolution alone. The friction coefficient turns out to be given in terms of auto-correlation functions of the interaction forces between the bath particles and the system, and the Einstein relation is recovered. Moreover, the connection to the Fokker-Planck equation is established.

2.
Nat Commun ; 15(1): 1511, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396042

RESUMO

Inspired by biology, great progress has been made in creating artificial molecular motors. However, the dream of harnessing proteins - the building blocks selected by nature - to design autonomous motors has so far remained elusive. Here we report the synthesis and characterization of the Lawnmower, an autonomous, protein-based artificial molecular motor comprised of a spherical hub decorated with proteases. Its "burnt-bridge" motion is directed by cleavage of a peptide lawn, promoting motion towards unvisited substrate. We find that Lawnmowers exhibit directional motion with average speeds of up to 80 nm/s, comparable to biological motors. By selectively patterning the peptide lawn on microfabricated tracks, we furthermore show that the Lawnmower is capable of track-guided motion. Our work opens an avenue towards nanotechnology applications of artificial protein motors.


Assuntos
Proteínas Motores Moleculares , Nanotecnologia , Movimento (Física) , Proteínas Motores Moleculares/química , Peptídeos
3.
Phys Rev E ; 100(1-1): 010102, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31499844

RESUMO

Anomalous diffusion occurs in many physical and biological phenomena, when the growth of the mean squared displacement (MSD) with time has an exponent different from one. We show that recurrent neural networks (RNNs) can efficiently characterize anomalous diffusion by determining the exponent from a single short trajectory, outperforming the standard estimation based on the MSD when the available data points are limited, as is often the case in experiments. Furthermore, the RNNs can handle more complex tasks where there are no standard approaches, such as determining the anomalous diffusion exponent from a trajectory sampled at irregular times, and estimating the switching time and anomalous diffusion exponents of an intermittent system that switches between different kinds of anomalous diffusion. We validate our method on experimental data obtained from subdiffusive colloids trapped in speckle light fields and superdiffusive microswimmers.

4.
Soft Matter ; 15(23): 4593-4608, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31147662

RESUMO

Mechanical interactions of chiral objects with their environment are well-established at the macroscale, like a propeller on a plane or a rudder on a boat. At the colloidal scale and smaller, however, such interactions are often not considered or deemed irrelevant due to Brownian motion. As we will show in this tutorial review, mechanical interactions do have significant effects on chiral objects at all scales, and can be induced using shearing surfaces, collisions with walls or repetitive microstructures, fluid flows, or by applying electrical or optical forces. Achieving chiral resolution by mechanical means is very promising in the field of soft matter and to industry, but has not received much attention so far.

5.
Phys Rev Lett ; 122(14): 140601, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31050471

RESUMO

Nanoscale machines are strongly influenced by thermal fluctuations, contrary to their macroscopic counterparts. As a consequence, even the efficiency of such microscopic machines becomes a fluctuating random variable. Using geometric properties and the fluctuation theorem for the total entropy production, a "universal theory of efficiency fluctuations" at long times, for machines with a finite state space, was developed by Verley et al. [Nat. Commun. 5, 4721 (2014)NCAOBW2041-172310.1038/ncomms5721; Phys. Rev. E 90, 052145 (2014)PRESCM1539-375510.1103/PhysRevE.90.052145]. We extend this theory to machines with an arbitrary state space. Thereby, we work out more detailed prerequisites for the "universal features" and explain under which circumstances deviations can occur. We also illustrate our findings with exact results for two nontrivial models of colloidal engines.

6.
Phys Rev Lett ; 119(6): 060603, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949644

RESUMO

We study the diffusive dynamics of a Brownian particle in the proximity of a flat surface under nonequilibrium conditions, which are created by an anisotropic thermal environment with different temperatures being active along distinct spatial directions. By presenting the exact time-dependent solution of the Fokker-Planck equation for this problem, we demonstrate that the interplay between anisotropic diffusion and hard-core interaction with the plain wall rectifies the thermal fluctuations and induces directed particle transport parallel to the surface, without any deterministic forces being applied in that direction. Based on current micromanipulation technologies, we suggest a concrete experimental setup to observe this novel noise-induced transport mechanism. We furthermore show that it is sensitive to particle characteristics, such that this setup can be used for sorting particles of different sizes.

7.
Electrophoresis ; 38(11): 1483-1506, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28306161

RESUMO

Dielectrophoresis is the migration of an electrically polarizable particle in an inhomogeneous electric field. This migration can be exploited for several applications with (bio)molecules or cells. Dielectrophoresis is a noninvasive technique; therefore, it is very convenient for (selective) manipulation of (bio)molecules or cells. In this review, we will focus on DNA dielectrophoresis as this technique offers several advantages in trapping and immobilization, separation and purification, and analysis of DNA molecules. We present and discuss the underlying theory of the most important forces that have to be considered for applications with dielectrophoresis. Moreover, a review of DNA dielectrophoresis applications is provided to present the state-of-the-art and to offer the reader a perspective of the advances and current limitations of DNA dielectrophoresis.


Assuntos
DNA/análise , Eletroforese , Desenho de Equipamento , Simulação por Computador , Eletricidade , Eletro-Osmose , Eletroforese/instrumentação , Eletroforese/métodos , Desenho de Equipamento/instrumentação , Desenho de Equipamento/métodos , Humanos , Dispositivos Lab-On-A-Chip , Microeletrodos , Modelos Teóricos , Movimento (Física) , Nanopartículas/análise , Propriedades de Superfície , Temperatura
8.
Phys Rev E ; 96(5-1): 052106, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29347639

RESUMO

Microscopic heat engines are microscale systems that convert energy flows between heat reservoirs into work or systematic motion. We have experimentally realized a minimal microscopic heat engine. It consists of a colloidal Brownian particle optically trapped in an elliptical potential well and simultaneously coupled to two heat baths at different temperatures acting along perpendicular directions. For a generic arrangement of the principal directions of the baths and the potential, the symmetry of the system is broken, such that the heat flow drives a systematic gyrating motion of the particle around the potential minimum. Using the experimentally measured trajectories, we quantify the gyrating motion of the particle, the resulting torque that it exerts on the potential, and the associated heat flow between the heat baths. We find excellent agreement between the experimental results and the theoretical predictions.

9.
Phys Rev E ; 93(1): 012132, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26871049

RESUMO

We analyze the translational and rotational motion of an ellipsoidal Brownian particle from the viewpoint of stochastic thermodynamics. The particle's Brownian motion is driven by external forces and torques and takes place in an heterogeneous thermal environment where friction coefficients and (local) temperature depend on space and time. Our analysis of the particle's stochastic thermodynamics is based on the entropy production associated with single particle trajectories. It is motivated by the recent discovery that the overdamped limit of vanishing inertia effects (as compared to viscous fricion) produces a so-called "anomalous" contribution to the entropy production, which has no counterpart in the overdamped approximation, when inertia effects are simply discarded. Here we show that rotational Brownian motion in the overdamped limit generates an additional contribution to the "anomalous" entropy. We calculate its specific form by performing a systematic singular perturbation analysis for the generating function of the entropy production. As a side result, we also obtain the (well-known) equations of motion in the overdamped limit. We furthermore investigate the effects of particle shape and give explicit expressions of the "anomalous entropy" for prolate and oblate spheroids and for near-spherical Brownian particles.


Assuntos
Entropia , Modelos Teóricos , Movimento (Física) , Coloides/química , Processos Estocásticos
10.
Soft Matter ; 11(12): 2379-86, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25673057

RESUMO

We study the thermophoretic motion of a micron sized single colloidal particle in front of a flat wall by evanescent light scattering. To quantify thermophoretic effects we analyse the nonequilibrium steady state (NESS) of the particle in a constant temperature gradient perpendicular to the confining walls. We propose to determine thermophoretic forces from a "generalized potential" associated with the probability distribution of the particle position in the NESS. Experimentally we demonstrate, how this spatial probability distribution is measured and how thermophoretic forces can be extracted with 10 fN resolution. By varying temperature gradient and ambient temperature, the temperature dependence of Soret coefficient ST(T) is determined for r = 2.5 µm polystyrene and r = 1.35 µm melamine particles. The functional form of ST(T) is in good agreement with findings for smaller colloids. In addition, we measure and discuss hydrodynamic effects in the confined geometry. The theoretical and experimental technique proposed here extends thermophoresis measurements to so far inaccessible particle sizes and particle solvent combinations.

11.
Phys Rev Lett ; 110(19): 198302, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23705745

RESUMO

Micron-sized self-propelled (active) particles can be considered as model systems for characterizing more complex biological organisms like swimming bacteria or motile cells. We produce asymmetric microswimmers by soft lithography and study their circular motion on a substrate and near channel boundaries. Our experimental observations are in full agreement with a theory of Brownian dynamics for asymmetric self-propelled particles, which couples their translational and orientational motion.


Assuntos
Fenômenos Fisiológicos Bacterianos , Movimento Celular , Modelos Biológicos , Natação
12.
J Chem Phys ; 137(16): 164108, 2012 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-23126696

RESUMO

A novel approach to account for hard-body interactions in (overdamped) Brownian dynamics simulations is proposed for systems with non-vanishing force fields. The scheme exploits the analytically known transition probability for a Brownian particle on a one-dimensional half-line. The motion of a Brownian particle is decomposed into a component that is affected by hard-body interactions and into components that are unaffected. The hard-body interactions are incorporated by replacing the "affected" component of motion by the evolution on a half-line. It is discussed under which circumstances this approach is justified. In particular, the algorithm is developed and formulated for systems with space-fixed obstacles and for systems comprising spherical particles. The validity and justification of the algorithm is investigated numerically by looking at exemplary model systems of soft matter, namely at colloids in flow fields and at protein interactions. Furthermore, a thorough discussion of properties of other heuristic algorithms is carried out.


Assuntos
Algoritmos , Coloides/química , Simulação por Computador , Modelos Químicos , Proteínas/química , Difusão , Modelos Biológicos , Movimento (Física) , Mapeamento de Interação de Proteínas
13.
Phys Rev Lett ; 109(10): 100603, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23005274

RESUMO

We conceived a model experiment for a continuous separation strategy of chiral molecules (enantiomers) without the need of any chiral selector structure or derivatization agents: Microparticles that only differ by their chirality are shown to migrate along different directions when driven by a steady fluid flow through a square lattice of cylindrical posts. In accordance with our numerical predictions, the transport directions of the enantiomers depend very sensitively on the orientation of the lattice relative to the fluid flow.

14.
Phys Rev Lett ; 108(21): 214504, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-23003268

RESUMO

We propose a method to separate enantiomers in microfluidic or nanofluidic channels. It requires flow profiles that break chiral symmetry and have regions with high local shear. Such profiles can be generated in channels confined by walls with different hydrodynamic boundary conditions (e.g., slip lengths). Because of a nonlinear hydrodynamic effect, particles with different chirality migrate at different speeds and can be separated. The mechanism is demonstrated by computer simulations. We investigate the influence of thermal fluctuations (i.e., the Péclet number) and show that the effect disappears in the linear response regime. The details of the microscopic flow are important and determine which volume forces are necessary to achieve separation.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(6 Pt 1): 061132, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23005076

RESUMO

We consider two coupled particles moving along a periodic substrate potential with negligible inertia effects (overdamped limit). Even when the particles are identical and the substrate spatially symmetric, a sinusoidal external driving of appropriate amplitude and frequency may lead to spontaneous symmetry breaking in the form of a permanent directed motion of the dimer. Thermal noise restores ergodicity and thus zero net velocity, but entails arbitrarily fast diffusion of the dimer for sufficiently weak noise. Moreover, upon application of a static bias force, the dimer exhibits a motion opposite to that force (absolute negative mobility). The key requirement for all these effects is a nonconvex interaction potential of the two particles.


Assuntos
Coloides/química , Difusão , Dimerização , Transferência de Energia , Modelos Químicos , Simulação por Computador
16.
Phys Rev Lett ; 109(26): 260603, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23368546

RESUMO

Particle motion at the microscale is an incessant tug-of-war between thermal fluctuations and applied forces on one side and the strong resistance exerted by fluid viscosity on the other. Friction is so strong that completely neglecting inertia--the overdamped approximation--gives an excellent effective description of the actual particle mechanics. In sharp contrast to this result, here we show that the overdamped approximation dramatically fails when thermodynamic quantities such as the entropy production in the environment are considered, in the presence of temperature gradients. In the limit of vanishingly small, yet finite, inertia, we find that the entropy production is dominated by a contribution that is anomalous, i.e., has no counterpart in the overdamped approximation. This phenomenon, which we call an entropic anomaly, is due to a symmetry breaking that occurs when moving to the small, finite inertia limit. Anomalous entropy production is traced back to futile phase-space cyclic trajectories displaying a fast downgradient sweep followed by a slow upgradient return to the original position.


Assuntos
Modelos Químicos , Tamanho da Partícula , Termodinâmica , Viscosidade
17.
Lab Chip ; 12(3): 485-94, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22193706

RESUMO

Mixing and demixing (separation) are essential tasks in microfluidic devices, which seem to be contrary in nature. Accordingly, completely different strategies and devices are usually employed for their realization. We here present a microfluidic device which is capable of performing both these tasks as it can be operated in either mixing or demixing mode. The mixing and demixing processes are reversible and are accomplished by continuous operation of the device. An asymmetric S-shaped ridge extends over the full width of a microfluidic channel (200 µm) creating a constriction of 620 nm in height with an aspect ratio of 1 : 500. Appropriate AC and DC voltages generate electrodeless dielectrophoresis at the constriction as well as (linear) electrokinetic driving forces along the channel. These de/mixing parameters can be adapted in real time in such a way that continuous separation and mixing efficiencies of 85-100% can be achieved. As a proof of concept we demonstrate continuous mixing and demixing of polystyrene nanoparticles (20 and 100 nm). The experimental results are complemented by numerical simulations illustrating the particles' motion under the influence of the electrokinetic effects and thermal noise (diffusion). The monolithic one-step fabrication process by soft lithography (with PDMS in our case) will make integration and combination of several mixing and demixing functions into a more complex lab-on-a-chip device possible.


Assuntos
Eletroforese em Microchip/instrumentação , Eletroforese em Microchip/métodos , Nanopartículas/química , Difusão , Desenho de Equipamento/instrumentação , Desenho de Equipamento/métodos , Modelos Teóricos , Tamanho da Partícula , Poliestirenos/química
18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(6 Pt 2): 065701, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21797434

RESUMO

An algorithm for handling hard-wall interactions in simulations of driven diffusive particle motion is proposed. It exploits an exact expression for the one-dimensional transition probability in the presence of a hard (reflecting) wall and therefore is numerically exact in the sense that it does not introduce any additional approximation beyond the usual discretization procedures. Studying two standard situations from soft matter systems, its performance is compared to the heuristic approaches used in the literature.


Assuntos
Modelos Teóricos , Fenômenos Físicos , Difusão , Fricção
19.
Electrophoresis ; 32(17): 2253-73, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23361920

RESUMO

Dielectrophoresis is a non-destructive, label-free method to manipulate and separate (bio-) particles and macromolecules. The mechanism is based on the movement of polarizable objects in an inhomogeneous electric field. Here, microfluidic devices are reviewed that generate those inhomogeneous electric fields with insulating posts or constrictions, an approach called electrodeless or insulator-based dielectrophoresis. Possible advantages compared to electrode-based designs are a less complex, monolithic fabrication process with low-cost polymeric substrates and no metal surface deterioration within the area of sample analysis. The electrodeless design has led to novel devices, implementing the functionality directly into the channel geometry and covering many areas of bioanalysis, like manipulation and separation of particles, cells, DNA, and proteins.


Assuntos
Eletroforese/métodos , Técnicas Analíticas Microfluídicas/métodos , Linhagem Celular Tumoral , Técnicas Citológicas/métodos , DNA/análise , Difusão , Eletro-Osmose , Humanos , Proteínas/análise
20.
Phys Rev Lett ; 105(3): 034502, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20867767

RESUMO

Isomeric molecules that only differ in the spatial orientation of their constituents are called stereoisomers. We demonstrate that different stereoisomers are transported typically at different velocities in a fluid streaming through a straight microchannel. As the underlying mechanism, we identify a translation-rotation coupling in the motion of the molecules which is specific for the molecule structure. This effect can be exploited for the separation of stereoisomers, a task of immense importance in biotechnology and pharmaceutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...